Li Hua and Path
题意翻译
刚开始给定一个 $n$ 个点的树。
对于一棵树上,如果有两个点 $u<v$ 满足下面两个条件恰有一个成立,那么 $(u,v)$ 就是个好对子。
条件:
1. $u$ 是 $u\to v$ 路径上**编号**最小的点
2. $v$ 是 $u\to v$ 路径上**编号**最大的点
有 $m$ 个修改,给出一个数 $x<n+i$,第 $i$ 次修改加入一个编号为 $n+i$ 的点,以 $x$ 点为父亲。
输出共 $m+1$ 行,输出刚开始和每次修改后好对子的个数。
题目描述
Li Hua has a tree of $ n $ vertices and $ n-1 $ edges. The vertices are numbered from $ 1 $ to $ n $ .
A pair of vertices $ (u,v) $ ( $ u < v $ ) is considered cute if exactly one of the following two statements is true:
- $ u $ is the vertex with the minimum index among all vertices on the path $ (u,v) $ .
- $ v $ is the vertex with the maximum index among all vertices on the path $ (u,v) $ .
There will be $ m $ operations. In each operation, he decides an integer $ k_j $ , then inserts a vertex numbered $ n+j $ to the tree, connecting with the vertex numbered $ k_j $ .
He wants to calculate the number of cute pairs before operations and after each operation.
Suppose you were Li Hua, please solve this problem.
输入输出格式
输入格式
The first line contains the single integer $ n $ ( $ 2\le n\le 2\cdot 10^5 $ ) — the number of vertices in the tree.
Next $ n-1 $ lines contain the edges of the tree. The $ i $ -th line contains two integers $ u_i $ and $ v_i $ ( $ 1\le u_i,v_i\le n $ ; $ u_i\ne v_i $ ) — the corresponding edge. The given edges form a tree.
The next line contains the single integer $ m $ ( $ 1\le m\le 2\cdot 10^5 $ ) — the number of operations.
Next $ m $ lines contain operations — one operation per line. The $ j $ -th operation contains one integer $ k_j $ ( $ 1\le k_j < n+j $ ) — a vertex.
输出格式
Print $ m+1 $ integers — the number of cute pairs before operations and after each operation.
输入输出样例
输入样例 #1
7
2 1
1 3
1 4
4 6
4 7
6 5
2
5
6
输出样例 #1
11
15
19
说明
The initial tree is shown in the following picture:
![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1797F/40030754c3599c0066765ff738689e7d545076fa.png)There are $ 11 $ cute pairs — $ (1,5),(2,3),(2,4),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(5,7),(6,7) $ .
Similarly, we can count the cute pairs after each operation and the result is $ 15 $ and $ 19 $ .