Very Different Array
题意翻译
给你一个长度为 $n$ 的序列 $a$,和一个长度为 $m$ 的序列 $b$,其中 $m≥n$。
你的任务是在 $b$ 中选出 $n$ 个数以任意顺序组成序列 $c$,使得 $D=\sum _{i=1}^n \left\vert a_i-c_i \right\vert$ 最大。输出 $D$ 即可。
多组测试数据,$t≤100$。
$1≤n≤m≤2×10^5$。
$1≤a_i,b_i≤10^9$。
题目描述
Petya has an array $ a_i $ of $ n $ integers. His brother Vasya became envious and decided to make his own array of $ n $ integers.
To do this, he found $ m $ integers $ b_i $ ( $ m\ge n $ ), and now he wants to choose some $ n $ integers of them and arrange them in a certain order to obtain an array $ c_i $ of length $ n $ .
To avoid being similar to his brother, Vasya wants to make his array as different as possible from Petya's array. Specifically, he wants the total difference $ D = \sum_{i=1}^{n} |a_i - c_i| $ to be as large as possible.
Help Vasya find the maximum difference $ D $ he can obtain.
输入输出格式
输入格式
Each test consists of multiple test cases. The first line contains a single integer $ t $ ( $ 1 \le t \le 100 $ ) — the number of test cases. This is followed by a description of the test cases.
The first line of each test case contains two integers $ n $ and $ m $ ( $ 1\le n\le m\le 2 \cdot 10^5 $ ).
The second line of each test case contains $ n $ integers $ a_i $ ( $ 1\le a_i\le 10^9 $ ). The third line of each test case contains $ m $ integers $ b_i $ ( $ 1\le b_i\le 10^9 $ ).
It is guaranteed that in a test, the sum of $ m $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
输出格式
For each test case, output a single integer — the maximum total difference $ D $ that can be obtained.
输入输出样例
输入样例 #1
9
4 6
6 1 2 4
3 5 1 7 2 3
3 4
1 1 1
1 1 1 1
5 5
1 2 3 4 5
1 2 3 4 5
2 6
5 8
8 7 5 8 2 10
2 2
4 1
9 6
4 6
8 10 6 4
3 10 6 1 8 9
3 5
6 5 2
1 7 9 7 2
5 5
9 10 6 3 7
5 9 2 3 9
1 6
3
2 7 10 1 1 5
输出样例 #1
16
0
12
11
10
23
15
25
7
说明
In the first example, Vasya can, for example, create the array $ (1, 5, 7, 2) $ . Then the total difference will be $ D = |6-1|+|1-5|+|2-7|+|4-2| = 5+4+5+2 = 16 $ .
In the second example, all the integers available to Vasya are equal to 1, so he can only create the array $ (1, 1, 1) $ , for which the difference $ D = 0 $ .
In the third example, Vasya can, for example, create the array $ (5, 4, 3, 2, 1) $ . Then the total difference will be $ D = |1-5|+|2-4|+|3-3|+|4-2|+|5-1| = 4+2+0+2+4 = 12 $ .