Paint the Tree
题意翻译
378QAQ 有一棵树,其顶点有 $n$ 个。最初,所有顶点都是白色的。
树上有两个棋子,分别称为 $P_A$ 和 $P_B$ 。 $P_A$ 和 $P_B$ 最初分别位于顶点 $a$ 和 $b$ 上。在每一步中,378QAQ 将按顺序执行以下操作:
1. 将 $P_A$ 移动到相邻顶点。如果目标顶点是白色的,则该顶点将被涂成红色。
2. 将 $P_B$ 移动到相邻顶点。如果目标顶点是红色的,则该顶点将被涂成蓝色。
最初,顶点 $a$ 被涂成红色。如果 $a=b$ ,则顶点 $a$ 被涂成蓝色。请注意,每一步都必须移动两个棋子。两个棋子可以同时位于同一个顶点。
378QAQ 想知道将所有顶点涂成蓝色所需的最少步数。
题目描述
378QAQ has a tree with $ n $ vertices. Initially, all vertices are white.
There are two chess pieces called $ P_A $ and $ P_B $ on the tree. $ P_A $ and $ P_B $ are initially located on vertices $ a $ and $ b $ respectively. In one step, 378QAQ will do the following in order:
1. Move $ P_A $ to a neighboring vertex. If the target vertex is white, this vertex will be painted red.
2. Move $ P_B $ to a neighboring vertex. If the target vertex is colored in red, this vertex will be painted blue.
Initially, the vertex $ a $ is painted red. If $ a=b $ , the vertex $ a $ is painted blue instead. Note that both the chess pieces must be moved in each step. Two pieces can be on the same vertex at any given time.
378QAQ wants to know the minimum number of steps to paint all vertices blue.
输入输出格式
输入格式
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1\leq t\leq 10^4 $ ). The description of the test cases follows.
The first line of each test case contains one integer $ n $ ( $ 1\leq n\leq 2\cdot 10^5 $ ).
The second line of each test case contains two integers $ a $ and $ b $ ( $ 1\leq a,b\leq n $ ).
Then $ n - 1 $ lines follow, each line contains two integers $ x_i $ and $ y_i $ ( $ 1 \le x_i,y_i \le n $ ), indicating an edge between vertices $ x_i $ and $ y_i $ . It is guaranteed that these edges form a tree.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2\cdot 10^5 $ .
输出格式
For each test case, output the minimum number of steps to paint all vertices blue.
输入输出样例
输入样例 #1
3
2
1 2
1 2
5
1 2
1 2
1 3
1 4
1 5
8
5 4
7 1
1 5
1 8
8 3
7 2
8 6
3 4
输出样例 #1
2
8
13
说明
In the first test case, 378QAQ can paint all vertices blue in the following order:
- Initially, $ P_A $ is located on the vertex $ 1 $ , and $ P_B $ is located on the vertex $ 2 $ . The vertex $ 1 $ is painted red and the vertex $ 2 $ is white.
- 378QAQ moves $ P_A $ to the vertex $ 2 $ and paints it red. Then 378QAQ moves $ P_B $ to the vertex $ 1 $ and paints it blue.
- 378QAQ moves $ P_A $ to the vertex $ 1 $ . Then 378QAQ moves $ P_B $ to the vertex $ 2 $ and paints it blue.