CF285E Positions in Permutations

Description

Permutation $ p $ is an ordered set of integers $ p_{1},p_{2},...,p_{n} $ , consisting of $ n $ distinct positive integers, each of them doesn't exceed $ n $ . We'll denote the $ i $ -th element of permutation $ p $ as $ p_{i} $ . We'll call number $ n $ the size or the length of permutation $ p_{1},p_{2},...,p_{n} $ . We'll call position $ i $ ( $ 1

Input Format

N/A

Output Format

N/A

Explanation/Hint

The only permutation of size 1 has 0 good positions. Permutation $ (1,2) $ has 0 good positions, and permutation $ (2,1) $ has 2 positions. Permutations of size 3: 1. $ (1,2,3) $ — 0 positions 2. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF285E/0be2e55cf7a19e2daea8429a422511a827d2e236.png) — 2 positions 3. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF285E/581bad7452cc25f3e2dca31dac99a205bf6361ef.png) — 2 positions 4. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF285E/aad15ec07c7621cca60c3be370547e4457323e38.png) — 2 positions 5. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF285E/b2a9b87daae026f62e110bd34347625817635c68.png) — 2 positions 6. $ (3,2,1) $ — 0 positions