Greg and Caves
题意翻译
### 题目描述
Greg有一个8868,其屏幕为一$n \times m$的矩形,每个像素可以是黑色或白色。我们考虑将8868的行从上到下编号为1到$n$。类似地,8868的列从左到右编号为1到$m$
Greg认为8868显示一个洞时,当且仅当以下情况:
- $\exist$区间$[l,r](1 \leq l \leq r \leq n)$,使得每一行恰有两个黑色像素,而所有其他行只有白色像素
- $\exist$行$t(l \leq t \leq r)$,使得对于$\forall(i,j)(l \leq i \leq j \leq t)$,第$i$行中黑色单元格之间列的集合$S_1$,与第$j$行中黑色单元格之间列的集合$S_2$,满足$S_1 \subseteq S_2$,同样对于$\forall (i,j)(t \leq i \leq j \leq r)$,第$i$行中黑色单元格之间列的集合$S_1$,与第$j$行中黑色单元格之间列的集合$S_2$,满足$S_2 \subseteq S_1$,
Greg想知道,有多少种方案能让他的8868显示一个洞。当且仅当两个屏幕存在一个位置像素颜色不同,两种方案不同
帮帮Greg吧
### 输入输出格式
#### 输入格式:
第一行两个整数$n$,$m$表示8868的分辨率$(1 \leq n,m \leq 2000)$
#### 输出格式:
一行,答案在模$1e9+7$意义下的数值
题目描述
Greg has a pad. The pad's screen is an $ n×m $ rectangle, each cell can be either black or white. We'll consider the pad rows to be numbered with integers from 1 to $ n $ from top to bottom. Similarly, the pad's columns are numbered with integers from 1 to $ m $ from left to right.
Greg thinks that the pad's screen displays a cave if the following conditions hold:
- There is a segment $ [l,r] $ $ (1<=l<=r<=n) $ , such that each of the rows $ l,l+1,...,r $ has exactly two black cells and all other rows have only white cells.
- There is a row number $ t $ $ (l<=t<=r) $ , such that for all pairs of rows with numbers $ i $ and $ j $ $ (l<=i<=j<=t) $ the set of columns between the black cells in row $ i $ (with the columns where is these black cells) is the subset of the set of columns between the black cells in row $ j $ (with the columns where is these black cells). Similarly, for all pairs of rows with numbers $ i $ and $ j $ $ (t<=i<=j<=r) $ the set of columns between the black cells in row $ j $ (with the columns where is these black cells) is the subset of the set of columns between the black cells in row $ i $ (with the columns where is these black cells).
Greg wondered, how many ways there are to paint a cave on his pad. Two ways can be considered distinct if there is a cell that has distinct colors on the two pictures.
Help Greg.
输入输出格式
输入格式
The first line contains two integers $ n $ , $ m $ — the pad's screen size $ (1<=n,m<=2000) $ .
输出格式
In the single line print the remainder after dividing the answer to the problem by $ 1000000007 $ $ (10^{9}+7) $ .
输入输出样例
输入样例 #1
1 1
输出样例 #1
0
输入样例 #2
4 4
输出样例 #2
485
输入样例 #3
3 5
输出样例 #3
451