Xenia and Bit Operations

题意翻译

有 $2^n$ 个数 $a_1,a_2,\cdots,a_{2^n}$,我们可以先对 $a$ 两个两个进行位或运算,而后对 $a$ 进行位或运算后的结果两个两个进行位异或运算……例如,当 $n=2$ 时,我们要求的是 $(a_1\lor a_2)\oplus(a_3\lor a_4)$,当 $n=3$ 时我们要求的是 $((a_1\lor a_2)\oplus(a_3\lor a_4))\lor((a_5\lor a_6)\oplus(a_7\lor a_8))$。而后,对于 $m$ 次操作,每次有两个参数 $x,y$,先使 $a_x\leftarrow y$,而后求出上述的值。 $1\le n\le 17,1\le m\le 10^5,0\le y\le 2^{30}$。

题目描述

Xenia the beginner programmer has a sequence $ a $ , consisting of $ 2^{n} $ non-negative integers: $ a_{1},a_{2},...,a_{2^{n}} $ . Xenia is currently studying bit operations. To better understand how they work, Xenia decided to calculate some value $ v $ for $ a $ . Namely, it takes several iterations to calculate value $ v $ . At the first iteration, Xenia writes a new sequence $ a_{1} or a_{2},a_{3} or a_{4},...,a_{2^{n}-1} or a_{2^{n}} $ , consisting of $ 2^{n-1} $ elements. In other words, she writes down the bit-wise OR of adjacent elements of sequence $ a $ . At the second iteration, Xenia writes the bitwise exclusive OR of adjacent elements of the sequence obtained after the first iteration. At the third iteration Xenia writes the bitwise OR of the adjacent elements of the sequence obtained after the second iteration. And so on; the operations of bitwise exclusive OR and bitwise OR alternate. In the end, she obtains a sequence consisting of one element, and that element is $ v $ . Let's consider an example. Suppose that sequence $ a=(1,2,3,4) $ . Then let's write down all the transformations $ (1,2,3,4) $ $ → $ $ (1 or 2=3,3 or 4=7) $ $ → $ $ (3 xor 7=4) $ . The result is $ v=4 $ . You are given Xenia's initial sequence. But to calculate value $ v $ for a given sequence would be too easy, so you are given additional $ m $ queries. Each query is a pair of integers $ p,b $ . Query $ p,b $ means that you need to perform the assignment $ a_{p}=b $ . After each query, you need to print the new value $ v $ for the new sequence $ a $ .

输入输出格式

输入格式


The first line contains two integers $ n $ and $ m $ $ (1<=n<=17,1<=m<=10^{5}) $ . The next line contains $ 2^{n} $ integers $ a_{1},a_{2},...,a_{2^{n}} $ $ (0<=a_{i}&lt;2^{30}) $ . Each of the next $ m $ lines contains queries. The $ i $ -th line contains integers $ p_{i},b_{i} $ $ (1<=p_{i}<=2^{n},0<=b_{i}&lt;2^{30}) $ — the $ i $ -th query.

输出格式


Print $ m $ integers — the $ i $ -th integer denotes value $ v $ for sequence $ a $ after the $ i $ -th query.

输入输出样例

输入样例 #1

2 4
1 6 3 5
1 4
3 4
1 2
1 2

输出样例 #1

1
3
3
3

说明

For more information on the bit operations, you can follow this link: http://en.wikipedia.org/wiki/Bitwise\_operation