CF444B DZY Loves FFT

Description

DZY loves Fast Fourier Transformation, and he enjoys using it. Fast Fourier Transformation is an algorithm used to calculate convolution. Specifically, if $ a $ , $ b $ and $ c $ are sequences with length $ n $ , which are indexed from $ 0 $ to $ n-1 $ , and ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF444B/7b8bbc996edafee525df233cf5ddc2a80add55f1.png)We can calculate $ c $ fast using Fast Fourier Transformation. DZY made a little change on this formula. Now ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF444B/e4369feaf99b9f895a003f77c4672d4618de9da5.png)To make things easier, $ a $ is a permutation of integers from $ 1 $ to $ n $ , and $ b $ is a sequence only containing $ 0 $ and $ 1 $ . Given $ a $ and $ b $ , DZY needs your help to calculate $ c $ . Because he is naughty, DZY provides a special way to get $ a $ and $ b $ . What you need is only three integers $ n $ , $ d $ , $ x $ . After getting them, use the code below to generate $ a $ and $ b $ . ``` //x is 64-bit variable; function getNextX() { x = (x * 37 + 10007) % 1000000007; return x; } function initAB() { for(i = 0; i < n; i = i + 1){ a[i] = i + 1; } for(i = 0; i < n; i = i + 1){ swap(a[i], a[getNextX() % (i + 1)]); } for(i = 0; i < n; i = i + 1){ if (i < d) b[i] = 1; else b[i] = 0; } for(i = 0; i < n; i = i + 1){ swap(b[i], b[getNextX() % (i + 1)]); } } ``` Operation x % y denotes remainder after division $ x $ by $ y $ . Function swap(x, y) swaps two values $ x $ and $ y $ .

Input Format

N/A

Output Format

N/A

Explanation/Hint

In the first sample, $ a $ is $ [1\ 3\ 2] $ , $ b $ is $ [1\ 0\ 0] $ , so $ c_{0}=max(1·1)=1 $ , $ c_{1}=max(1·0,3·1)=3 $ , $ c_{2}=max(1·0,3·0,2·1)=2 $ . In the second sample, $ a $ is $ [2\ 1\ 4\ 5\ 3] $ , $ b $ is $ [1\ 1\ 1\ 0\ 1] $ . In the third sample, $ a $ is $ [5\ 2\ 1\ 4\ 3] $ , $ b $ is $ [1\ 1\ 1\ 1\ 0] $ .