Mr. Kitayuta's Colorful Graph

题意翻译

给出一个 $n$ 个点,$m$ 条边的无向图,每条边上是有颜色的。有 $q$ 组询问 对于第 $i$ 组询问,给出点对 $u_i,v_i$, 求有多少种颜色 $c$,满足存在至少一条从 $u_i$ 到 $v_i$ 的路径,使得该路径上的所有边的颜色均为 $c$。 ### 输入格式 第一行两个整数 $n,m$ 分别表示点的个数和边的个数 接下来 $m$ 行,每行三个整数 $x_i,y_i,c_i$,表示有一条连接点 $x_i,y_i$ 的边,且该边的颜色为 $c_i$ 接下来一行一个整数 $q$,表示询问的个数 接下来 $q$ 行,每行两个整数 $u_i,v_i$,表示一组询问 ### 输出格式 对于每一组询问,在单独的一行输出对应的答案 ### 说明与提示 $2 \le n \le 10^5$ $1 \le m,q \le 10^5$ $1\le x_i,y_i,u_i,v_i \le n$ $1 \le c_i \le m$

题目描述

Mr. Kitayuta has just bought an undirected graph with $ n $ vertices and $ m $ edges. The vertices of the graph are numbered from 1 to $ n $ . Each edge, namely edge $ i $ , has a color $ c_{i} $ , connecting vertex $ a_{i} $ and $ b_{i} $ . Mr. Kitayuta wants you to process the following $ q $ queries. In the $ i $ -th query, he gives you two integers - $ u_{i} $ and $ v_{i} $ . Find the number of the colors that satisfy the following condition: the edges of that color connect vertex $ u_{i} $ and vertex $ v_{i} $ directly or indirectly.

输入输出格式

输入格式


The first line of the input contains space-separated two integers - $ n $ and $ m(2<=n<=10^{5},1<=m<=10^{5}) $ , denoting the number of the vertices and the number of the edges, respectively. The next $ m $ lines contain space-separated three integers - $ a_{i} $ , $ b_{i}(1<=a_{i}&lt;b_{i}<=n) $ and $ c_{i}(1<=c_{i}<=m) $ . Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if $ i≠j,(a_{i},b_{i},c_{i})≠(a_{j},b_{j},c_{j}) $ . The next line contains a integer- $ q(1<=q<=10^{5}) $ , denoting the number of the queries. Then follows $ q $ lines, containing space-separated two integers - $ u_{i} $ and $ v_{i}(1<=u_{i},v_{i}<=n) $ . It is guaranteed that $ u_{i}≠v_{i} $ .

输出格式


For each query, print the answer in a separate line.

输入输出样例

输入样例 #1

4 5
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4

输出样例 #1

2
1
0

输入样例 #2

5 7
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4

输出样例 #2

1
1
1
1
2

说明

Let's consider the first sample. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF506D/08b944388e3e1a45436703f56d70d62287011768.png) The figure above shows the first sample. - Vertex $ 1 $ and vertex $ 2 $ are connected by color $ 1 $ and $ 2 $ . - Vertex $ 3 $ and vertex $ 4 $ are connected by color $ 3 $ . - Vertex $ 1 $ and vertex $ 4 $ are not connected by any single color.