Sums of Digits
题意翻译
定义两个序列 a 和 b。
a序列是一个由正整数构成的单调严格递增的序列。同时 b 序列中的 $b_i$ 是 $a_i$ 的各数位上的数字之和。
已知b序列,请根据b还原出a序列。同时要求 $a_n$ (a序列的最后一项)尽可能的小。
数据保证有解。
输入:第一行一个数 n ,表示 a 序列与 b 序列的长度。
接下来每行一个数,第 $i+1$ 行为$ b_i$ 的值。
输出:每行一个数,第 $i$ 行为$ a_i$ 的值。
题目描述
Vasya had a strictly increasing sequence of positive integers $ a_{1} $ , ..., $ a_{n} $ . Vasya used it to build a new sequence $ b_{1} $ , ..., $ b_{n} $ , where $ b_{i} $ is the sum of digits of $ a_{i} $ 's decimal representation. Then sequence $ a_{i} $ got lost and all that remained is sequence $ b_{i} $ .
Vasya wonders what the numbers $ a_{i} $ could be like. Of all the possible options he likes the one sequence with the minimum possible last number $ a_{n} $ . Help Vasya restore the initial sequence.
It is guaranteed that such a sequence always exists.
输入输出格式
输入格式
The first line contains a single integer number $ n $ ( $ 1<=n<=300 $ ).
Next $ n $ lines contain integer numbers $ b_{1} $ , ..., $ b_{n} $ — the required sums of digits. All $ b_{i} $ belong to the range $ 1<=b_{i}<=300 $ .
输出格式
Print $ n $ integer numbers, one per line — the correct option for numbers $ a_{i} $ , in order of following in sequence. The sequence should be strictly increasing. The sum of digits of the $ i $ -th number should be equal to $ b_{i} $ .
If there are multiple sequences with least possible number $ a_{n} $ , print any of them. Print the numbers without leading zeroes.
输入输出样例
输入样例 #1
3
1
2
3
输出样例 #1
1
2
3
输入样例 #2
3
3
2
1
输出样例 #2
3
11
100