Circular RMQ
题意翻译
【题目大意】
给定一个环形数列 $a_0,a_1,\dots,a_{n-1}$。
现在有 $2$ 种操作:
+ $\operatorname{inc}(lf,rg,v)$:将区间 $[lf,rg]$ 中的每个数增加 $v$。
+ $\operatorname{rmq}(lf,rg)$:求出区间 $[lf,rg]$ 中的最小值。
因为数列是环形的,所以当 $n=5$,$lf=3$,$rg=1$ 时,表示的区间下标为 $3,4,0,1$。
Translated by 小恐。
【输入】
第一行有一个整数 $n$。
第二行为数列的初始状态 $a_0,a_1,\dots,a_{n-1}$,$a_i$ 是整数。
第三行有一个整数 $m$,表示操作次数。
接下来m行每行为一个操作。如果该行有两个整数 $lf$,$rg$ 表示 $\operatorname{rmq}$ 操作,如果该行有三个整数 $lf$,$rg$,$v$ 表示 $\operatorname{inc}$ 操作。
【输出】
对于每个 $\operatorname{rmq}$ 操作输出一行答案。
题目描述
You are given circular array $ a_{0},a_{1},...,a_{n-1} $ . There are two types of operations with it:
- $ inc(lf,rg,v) $ — this operation increases each element on the segment $ [lf,rg] $ (inclusively) by $ v $ ;
- $ rmq(lf,rg) $ — this operation returns minimal value on the segment $ [lf,rg] $ (inclusively).
Assume segments to be circular, so if $ n=5 $ and $ lf=3,rg=1 $ , it means the index sequence: $ 3,4,0,1 $ .
Write program to process given sequence of operations.
输入输出格式
输入格式
The first line contains integer $ n $ ( $ 1<=n<=200000 $ ). The next line contains initial state of the array: $ a_{0},a_{1},...,a_{n-1} $ ( $ -10^{6}<=a_{i}<=10^{6} $ ), $ a_{i} $ are integer. The third line contains integer $ m $ ( $ 0<=m<=200000 $ ), $ m $ — the number of operartons. Next $ m $ lines contain one operation each. If line contains two integer $ lf,rg $ ( $ 0<=lf,rg<=n-1 $ ) it means $ rmq $ operation, it contains three integers $ lf,rg,v $ ( $ 0<=lf,rg<=n-1;-10^{6}<=v<=10^{6} $ ) — $ inc $ operation.
输出格式
For each $ rmq $ operation write result for it. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).
输入输出样例
输入样例 #1
4
1 2 3 4
4
3 0
3 0 -1
0 1
2 1
输出样例 #1
1
0
0