Number of Binominal Coefficients
题意翻译
给定质数 $p$ 和整数 $\alpha,A$,求满足 $0 \le k \le n \le A$ 且 $p^{\alpha}|\binom nk$ 的数对 $(n,k)$ 的个数。
$p,\alpha \le 10^9$,$A < 10^{1000}$,答案对 $10^9+7$ 取模。
题目描述
For a given prime integer $ p $ and integers $ α,A $ calculate the number of pairs of integers $ (n,k) $ , such that $ 0<=k<=n<=A $ and ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF582D/d96ba5d6be086c3d0df101778af0c927c054edb9.png) is divisible by $ p^{α} $ .
As the answer can be rather large, print the remainder of the answer moduly $ 10^{9}+7 $ .
Let us remind you that ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF582D/d96ba5d6be086c3d0df101778af0c927c054edb9.png) is the number of ways $ k $ objects can be chosen from the set of $ n $ objects.
输入输出格式
输入格式
The first line contains two integers, $ p $ and $ α $ ( $ 1<=p,α<=10^{9} $ , $ p $ is prime).
The second line contains the decimal record of integer $ A $ ( $ 0<=A<10^{1000} $ ) without leading zeroes.
输出格式
In the single line print the answer to the problem.
输入输出样例
输入样例 #1
2 2
7
输出样例 #1
3
输入样例 #2
3 1
9
输出样例 #2
17
输入样例 #3
3 3
9
输出样例 #3
0
输入样例 #4
2 4
5000
输出样例 #4
8576851
说明
In the first sample three binominal coefficients divisible by 4 are ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF582D/bed998b9151c636dcb106a9d59d333dcf36e51ee.png), ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF582D/ea939f10119dfab9c0d926b557f9bc915ee93a82.png) and ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF582D/7af37d32634caf541e32a8e83877ecf38ed8d42f.png).