Lomsat gelral
题意翻译
- 有一棵 $n$ 个结点的以 $1$ 号结点为根的**有根树**。
- 每个结点都有一个颜色,颜色是以编号表示的, $i$ 号结点的颜色编号为 $c_i$。
- 如果一种颜色在以 $x$ 为根的子树内出现次数最多,称其在以 $x$ 为根的子树中占**主导地位**。显然,同一子树中可能有多种颜色占主导地位。
- 你的任务是对于每一个 $i\in[1,n]$,求出以 $i$ 为根的子树中,占主导地位的颜色的编号和。
- $n\le 10^5,c_i\le n$
题目描述
You are given a rooted tree with root in vertex $ 1 $ . Each vertex is coloured in some colour.
Let's call colour $ c $ dominating in the subtree of vertex $ v $ if there are no other colours that appear in the subtree of vertex $ v $ more times than colour $ c $ . So it's possible that two or more colours will be dominating in the subtree of some vertex.
The subtree of vertex $ v $ is the vertex $ v $ and all other vertices that contains vertex $ v $ in each path to the root.
For each vertex $ v $ find the sum of all dominating colours in the subtree of vertex $ v $ .
输入输出格式
输入格式
The first line contains integer $ n $ ( $ 1<=n<=10^{5} $ ) — the number of vertices in the tree.
The second line contains $ n $ integers $ c_{i} $ ( $ 1<=c_{i}<=n $ ), $ c_{i} $ — the colour of the $ i $ -th vertex.
Each of the next $ n-1 $ lines contains two integers $ x_{j},y_{j} $ ( $ 1<=x_{j},y_{j}<=n $ ) — the edge of the tree. The first vertex is the root of the tree.
输出格式
Print $ n $ integers — the sums of dominating colours for each vertex.
输入输出样例
输入样例 #1
4
1 2 3 4
1 2
2 3
2 4
输出样例 #1
10 9 3 4
输入样例 #2
15
1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
1 2
1 3
1 4
1 14
1 15
2 5
2 6
2 7
3 8
3 9
3 10
4 11
4 12
4 13
输出样例 #2
6 5 4 3 2 3 3 1 1 3 2 2 1 2 3