Lomsat gelral

题意翻译

- 有一棵 $n$ 个结点的以 $1$ 号结点为根的**有根树**。 - 每个结点都有一个颜色,颜色是以编号表示的, $i$ 号结点的颜色编号为 $c_i$。 - 如果一种颜色在以 $x$ 为根的子树内出现次数最多,称其在以 $x$ 为根的子树中占**主导地位**。显然,同一子树中可能有多种颜色占主导地位。 - 你的任务是对于每一个 $i\in[1,n]$,求出以 $i$ 为根的子树中,占主导地位的颜色的编号和。 - $n\le 10^5,c_i\le n$

题目描述

You are given a rooted tree with root in vertex $ 1 $ . Each vertex is coloured in some colour. Let's call colour $ c $ dominating in the subtree of vertex $ v $ if there are no other colours that appear in the subtree of vertex $ v $ more times than colour $ c $ . So it's possible that two or more colours will be dominating in the subtree of some vertex. The subtree of vertex $ v $ is the vertex $ v $ and all other vertices that contains vertex $ v $ in each path to the root. For each vertex $ v $ find the sum of all dominating colours in the subtree of vertex $ v $ .

输入输出格式

输入格式


The first line contains integer $ n $ ( $ 1<=n<=10^{5} $ ) — the number of vertices in the tree. The second line contains $ n $ integers $ c_{i} $ ( $ 1<=c_{i}<=n $ ), $ c_{i} $ — the colour of the $ i $ -th vertex. Each of the next $ n-1 $ lines contains two integers $ x_{j},y_{j} $ ( $ 1<=x_{j},y_{j}<=n $ ) — the edge of the tree. The first vertex is the root of the tree.

输出格式


Print $ n $ integers — the sums of dominating colours for each vertex.

输入输出样例

输入样例 #1

4
1 2 3 4
1 2
2 3
2 4

输出样例 #1

10 9 3 4

输入样例 #2

15
1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
1 2
1 3
1 4
1 14
1 15
2 5
2 6
2 7
3 8
3 9
3 10
4 11
4 12
4 13

输出样例 #2

6 5 4 3 2 3 3 1 1 3 2 2 1 2 3