Two Arithmetic Progressions

题意翻译

已知两个无限长的等差数列,首项分别为 $b_1, b_2$,公差分别为 $a_1, a_2$,求 $[L,R]$ 中有多少个数在两个等差数列中都出现了。

题目描述

You are given two arithmetic progressions: $ a_{1}k+b_{1} $ and $ a_{2}l+b_{2} $ . Find the number of integers $ x $ such that $ L<=x<=R $ and $ x=a_{1}k'+b_{1}=a_{2}l'+b_{2} $ , for some integers $ k',l'>=0 $ .

输入输出格式

输入格式


The only line contains six integers $ a_{1},b_{1},a_{2},b_{2},L,R \, ( 0 \lt a_1,a_2 \le 2\times10^9,-2\times10^9 \le b_1,b_2,L,R \le 2\times10^9,L \le R)$ .

输出格式


Print the desired number of integers $ x $ .

输入输出样例

输入样例 #1

2 0 3 3 5 21

输出样例 #1

3

输入样例 #2

2 4 3 0 6 17

输出样例 #2

2