Bottles

题意翻译

### 题目描述 有 $n$ 瓶水,第 $i$ 瓶水的水量为 $a_i$,容量为 $b_i$。将 $1$ 单位水从一个瓶子转移到另一个瓶子所消耗时间为 $1$ 秒,且可以进行无限次转移。求储存所有水所需最小瓶子数 $k$ 以及该情况下所用最小时间 $t$。 ### 输入格式 第一行输入一个正整数 $n$($1\le n\le 100$)。 第二行输入 $n$ 个正整数,第 $i$ 个正整数表示 $a_i$($1\le a_i \le 100$)。 第三行输入 $n$ 个正整数,第 $i$ 个正整数表示 $b_i$($1\le b_i \le100$)。 对于每一个 $i$,满足$a_i\le b_i$。 ### 输出格式 输出一行两个整数:$k$ 和 $t$。

题目描述

Nick has $ n $ bottles of soda left after his birthday. Each bottle is described by two values: remaining amount of soda $ a_{i} $ and bottle volume $ b_{i} $ ( $ a_{i}<=b_{i} $ ). Nick has decided to pour all remaining soda into minimal number of bottles, moreover he has to do it as soon as possible. Nick spends $ x $ seconds to pour $ x $ units of soda from one bottle to another. Nick asks you to help him to determine $ k $ — the minimal number of bottles to store all remaining soda and $ t $ — the minimal time to pour soda into $ k $ bottles. A bottle can't store more soda than its volume. All remaining soda should be saved.

输入输出格式

输入格式


The first line contains positive integer $ n $ ( $ 1<=n<=100 $ ) — the number of bottles. The second line contains $ n $ positive integers $ a_{1},a_{2},...,a_{n} $ ( $ 1<=a_{i}<=100 $ ), where $ a_{i} $ is the amount of soda remaining in the $ i $ -th bottle. The third line contains $ n $ positive integers $ b_{1},b_{2},...,b_{n} $ ( $ 1<=b_{i}<=100 $ ), where $ b_{i} $ is the volume of the $ i $ -th bottle. It is guaranteed that $ a_{i}<=b_{i} $ for any $ i $ .

输出格式


The only line should contain two integers $ k $ and $ t $ , where $ k $ is the minimal number of bottles that can store all the soda and $ t $ is the minimal time to pour the soda into $ k $ bottles.

输入输出样例

输入样例 #1

4
3 3 4 3
4 7 6 5

输出样例 #1

2 6

输入样例 #2

2
1 1
100 100

输出样例 #2

1 1

输入样例 #3

5
10 30 5 6 24
10 41 7 8 24

输出样例 #3

3 11

说明

In the first example Nick can pour soda from the first bottle to the second bottle. It will take 3 seconds. After it the second bottle will contain $ 3+3=6 $ units of soda. Then he can pour soda from the fourth bottle to the second bottle and to the third bottle: one unit to the second and two units to the third. It will take $ 1+2=3 $ seconds. So, all the soda will be in two bottles and he will spend $ 3+3=6 $ seconds to do it.