Vladik and fractions
题意翻译
**题目描述**
请找出一组合法的解使得$\frac {1}{x} + \frac{1}{y} + \frac {1}{z} = \frac {2}{n}$成立
其中$x,y,z$为正整数并且互不相同
**输入**
一个整数$n$
**输出**
一组合法的解$x, y ,z$,用空格隔开
若不存在合法的解,输出$-1$
**数据范围**
对于$100$%的数据满足$n \leq 10^4$
要求答案中$x,y,z \leq 2* 10^{9}$
感谢@Michael_Bryant 提供的翻译
题目描述
Vladik and Chloe decided to determine who of them is better at math. Vladik claimed that for any positive integer $ n $ he can represent fraction ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF743C/98fe6e67c0215dd9544c203cfb728334ac03fc69.png) as a sum of three distinct positive fractions in form ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF743C/140afc1972028e64ad54d4357592e925861bdf13.png).
Help Vladik with that, i.e for a given $ n $ find three distinct positive integers $ x $ , $ y $ and $ z $ such that ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF743C/388f8aea1d0cb4eefcbda4cfdf528ffa9edb155f.png). Because Chloe can't check Vladik's answer if the numbers are large, he asks you to print numbers not exceeding $ 10^{9} $ .
If there is no such answer, print -1.
输入输出格式
输入格式
The single line contains single integer $ n $ ( $ 1<=n<=10^{4} $ ).
输出格式
If the answer exists, print $ 3 $ distinct numbers $ x $ , $ y $ and $ z $ ( $ 1<=x,y,z<=10^{9} $ , $ x≠y $ , $ x≠z $ , $ y≠z $ ). Otherwise print -1.
If there are multiple answers, print any of them.
输入输出样例
输入样例 #1
3
输出样例 #1
2 7 42
输入样例 #2
7
输出样例 #2
7 8 56
说明
对于$100$%的数据满足$n \leq 10^4$
要求答案中$x,y,z \leq 2* 10^{9}$