CF798E Mike and code of a permutation
Description
Mike has discovered a new way to encode permutations. If he has a permutation $ P=[p_{1},p_{2},...,p_{n}] $ , he will encode it in the following way:
Denote by $ A=[a_{1},a_{2},...,a_{n}] $ a sequence of length $ n $ which will represent the code of the permutation. For each $ i $ from $ 1 $ to $ n $ sequentially, he will choose the smallest unmarked $ j $ ( $ 1
Input Format
N/A
Output Format
N/A
Explanation/Hint
For the permutation from the first example:
$ i=1 $ , the smallest $ j $ is $ 2 $ because $ p_{2}=6>p_{1}=2 $ .
$ i=2 $ , there is no $ j $ because $ p_{2}=6 $ is the greatest element in the permutation.
$ i=3 $ , the smallest $ j $ is $ 1 $ because $ p_{1}=2>p_{3}=1 $ .
$ i=4 $ , the smallest $ j $ is $ 5 $ ( $ 2 $ was already marked) because $ p_{5}=5>p_{4}=4 $ .
$ i=5 $ , there is no $ j $ because $ 2 $ is already marked.
$ i=6 $ , the smallest $ j $ is $ 4 $ because $ p_{4}=4>p_{6}=3 $ .