CF955F Heaps
Description
You're given a tree with $ n $ vertices rooted at $ 1 $ .
We say that there's a $ k $ -ary heap of depth $ m $ located at $ u $ if the following holds:
- For $ m=1 $ $ u $ itself is a $ k $ -ary heap of depth $ 1 $ .
- For $ m>1 $ vertex $ u $ is a $ k $ -ary heap of depth $ m $ if at least $ k $ of its children are $ k $ -ary heaps of depth at least $ m-1 $ .
Denote $ dp_{k}(u) $ as maximum depth of $ k $ -ary heap in the subtree of $ u $ (including $ u $ ). Your goal is to compute ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF955F/5de2414b533cccf22014f0b7eca5e58cbc6e8f9c.png).
Input Format
N/A
Output Format
N/A
Explanation/Hint
Consider sample case one.
For $ k>=3 $ all $ dp_{k} $ will be equal to $ 1 $ .
For $ k=2 $ $ dp_{k} $ is $ 2 $ if ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF955F/295fea3eafde0a7829eafa0db84ff6ad03162c9f.png) and $ 1 $ otherwise.
For $ k=1 $ $ dp_{k} $ values are $ (3,1,2,1) $ respectively.
To sum up, $ 4·1+4·1+2·2+2·1+3+1+2+1=21 $ .