CF981D Bookshelves
题目描述
## 题意:
$Keks$ 先生是 $Byteland$ 大陆的典型的白领。
他办公室里有一个书架,上面有几本书,每本书都有一个值为正整数的价格。
$Keks$ 先生把书架的价值定义为书价的总和。
出乎意料地是, $Keks$ 先生升职了,现在他要去一个新的办公室。
他知道,在新的办公室里,他将有不止一个书架,而恰恰是 $K$ 个书架。
他认为 $K$ 个书架的美丽程度在于所有书架的价值的“按位与”和。
他还决定不花时间重新整理书籍,所以他会先把几本书放在第一个书架上,下几本书放在下一个书架上,以此类推。当然,他会在每一个架子上放置至少一本书。这样,他会把所有的书放在 $K$ 个书架上,尽量使书架的美观程度越大越好。计算这个最大可能的美丽程度。
输入格式
无
输出格式
无
说明/提示
In the first example you can split the books as follows:
$ $$$(9 + 14 + 28 + 1 + 7) \& (13 + 15) \& (29 + 2) \& (31) = 24. $ $
In the second example you can split the books as follows:
$ $ (3 + 14 + 15 + 92) \& (65) \& (35 + 89) = 64. $ $$$