[NOIP2000 提高组] 进制转换

题目背景

NOIP2000 提高组 T1

题目描述

我们可以用这样的方式来表示一个十进制数:将每个阿拉伯数字乘以一个以该数字所处位置为指数,以 $10$ 为底数的幂之和的形式。例如 $123$ 可表示为 $1 \times 10^2+2\times 10^1+3\times 10^0$ 这样的形式。 与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置为指数,以 $2$ 为底数的幂之和的形式。 一般说来,任何一个正整数 $R$ 或一个负整数 $-R$ 都可以被选来作为一个数制系统的基数。如果是以 $R$ 或 $-R$ 为基数,则需要用到的数码为 $0,1,\dots,R-1$。 例如当 $R=7$ 时,所需用到的数码是 $0,1,2,3,4,5,6$,这与其是 $R$ 或 $-R$ 无关。如果作为基数的数绝对值超过 $10$,则为了表示这些数码,通常使用英文字母来表示那些大于 $9$ 的数码。例如对 $16$ 进制数来说,用 $A$ 表示 $10$,用 $B$ 表示 $11$,用 $C$ 表示 $12$,以此类推。 在负进制数中是用 $-R $ 作为基数,例如 $-15$(十进制)相当于 $(110001)_{-2}$($-2$进制),并且它可以被表示为 $2$ 的幂级数的和数: $$(110001)_{-2}=1\times (-2)^5+1\times (-2)^4+0\times (-2)^3+0\times (-2)^2+0\times (-2)^1 +1\times (-2)^0$$ 设计一个程序,读入一个十进制数和一个负进制数的基数,并将此十进制数转换为此负进制下的数。

输入输出格式

输入格式


输入的每行有两个输入数据。 第一个是十进制数 $n$。第二个是负进制数的基数 $R$。

输出格式


输出此负进制数及其基数,若此基数超过 $10$,则参照 $16$ 进制的方式处理。

输入输出样例

输入样例 #1

30000 -2

输出样例 #1

30000=11011010101110000(base-2)

输入样例 #2

-20000 -2

输出样例 #2

-20000=1111011000100000(base-2)

输入样例 #3

28800 -16

输出样例 #3

28800=19180(base-16)

输入样例 #4

-25000 -16

输出样例 #4

-25000=7FB8(base-16)

说明

**数据范围** 对于 $100\%$ 的数据,$-20 \le R \le -2$,$|n| \le 37336$。