「Cfz Round 2」Osmanthus

题目描述

给定一个长度为 $n$ 的序列 $a$。 我们定义一次操作为,**同时**将序列 $a$ 中的**每个**元素 $a_i$ 替换为 $\bigoplus\limits_{j=1}^i a_j$(即 $a_1$ 至 $a_i$ 的异或和),其中 $\bigoplus$ 表示**按位异或**,即 C++ 中的 `^`。 现有 $q$ 次有序的修改,每次修改会给定两个整数 $x_i,p_i$,表示将 $a_{x_i}$ 的值修改为 $p_i$。**修改之间并不独立,每次修改会对后续的修改产生影响**。 你需要在每次修改后,找到**最小**的正整数 $t$,满足进行 $t$ 次操作后的序列 $a$ 与操作前的序列 $a$ 相同。可以证明一定存在满足要求的正整数 $t$。 由于答案可能很大,所以你只需要输出答案对 $(10^9+7)$ 取模的结果。

输入输出格式

输入格式


第一行输入两个整数 $n,q$。 第二行输入 $n$ 个整数,表示给定的序列 $a$。 接下来 $q$ 行,每行输入两个整数 $x_i,p_i$,表示一次修改。

输出格式


共 $q$ 行,每行输出一个整数,其中第 $i$ 行的整数表示第 $i$ 次修改后,最小的满足要求的正整数 $t$ 对 $(10^9+7)$ 取模的结果。

输入输出样例

输入样例 #1

3 3
3 1 0
2 2
1 0
2 0

输出样例 #1

4
2
1

说明

#### 「样例解释 #1」 第 $1$ 次修改后的序列 $a$ 为 $\{3,2,0\}$,此时进行 $1$ 次操作后的序列 $a$ 为 $\{3,1,1\}$,进行 $2$ 次操作后的序列 $a$ 为 $\{3,2,3\}$,进行 $3$ 次操作后的序列 $a$ 为 $\{3,1,2\}$,进行 $4$ 次操作后的序列 $a$ 为 $\{3,2,0\}$,所以最小的满足要求的正整数 $t$ 为 $4$。 #### 「数据范围」 对于所有数据,$1 \le n,q \le 3\times10^5$,$0 \le a_i,p_i \le 10^9$,$1 \le x_i \le n$。 **只有你通过本题的所有测试点,你才能获得本题的分数。**