P1038 [NOIP 2003 提高组] 神经网络

题目背景

人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。

题目描述

在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子: ![](https://cdn.luogu.com.cn/upload/image_hosting/61qm40kj.png) 神经元(编号为 $i$) 图中,$X_1 \sim X_3$ 是信息输入渠道,$Y_1 \sim Y_2$ 是信息输出渠道,$C_i$ 表示神经元目前的状态,$U_i$ 是阈值,可视为神经元的一个内在参数。 神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经元分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。 ![](https://cdn.luogu.com.cn/upload/image_hosting/4xd7f8yz.png) 兰兰规定,$C_i$ 服从公式:(其中 $n$ 是网络中所有神经元的数目) $$C_i=\left(\sum\limits_{(j,i) \in E} W_{ji}C_{j}\right)-U_{i}$$ 公式中的 $W_{ji}$(可能为负值)表示连接 $j$ 号神经元和 $i$ 号神经元的边的权值。当 $C_i$ 大于 $0$ 时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为 $C_i$。 如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态($C_i$),要求你的程序运算出最后网络输出层的状态。

输入格式

输出格式

说明/提示

**【题目来源】** NOIP 2003 提高组第一题