P10543 [THUPC 2024 决赛] 黑白
题目描述
小 I 和小 J 又在玩游戏。
游戏在一个 $n \times m$ 的网格上进行,我们用二元组 $(x,y)$ 描述第 $x$ 行第 $y$ 列的格子,其中 $1 \le x \le n, 1 \le y \le m$。初始时,网格上有至少一个格子是白色的,其他格子是黑色的。
小 I 和小 J 轮流操作,小 I 先手。每次操作时,操作方必须选择恰好一个白色的格子并将其染黑。
称两个格子相邻当且仅当它们共用一条边。若某次操作后,格子 $(1,1)$ 不是白的,或者格子 $(n,m)$ 不是白的,或者无法从 $(1,1)$ 出发,每次经过相邻的白色格子,最终到达 $(n,m)$(即 $(1,1)$ 和 $(n,m)$ 不在同一个白色格子构成的四连通块内),则当前操作方输,另一方胜利。
你作为游戏的观众,想知道在小 I 和小 J 绝顶聪明的情况下,谁会获胜。
输入格式
无
输出格式
无
说明/提示
对于第一组测试数据,小 I 只能染黑 $(2,1)$,但染黑 $(2,1)$ 会导致无法仅通过每次移动到相邻的白色格子从 $(1,1)$ 移动到 $(2,2)$,因此无论小 I 如何操作都将失败,故输出 `J`。
对于第二组测试数据,小 I 可以染黑 $(1,2)$,然后无论小 J 如何操作都将失败,故输出 `I`。
**来源与致谢**
来自 THUPC2024(2024年清华大学学生程序设计竞赛暨高校邀请赛)决赛。感谢 THUSAA 的提供的题目。
数据、题面、标程、题解等请参阅 THUPC 官方仓库