[NOIP2014 普及组] 子矩阵

题目背景

NOIP2014 普及组 T4

题目描述

给出如下定义: 1. 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。 例如,下面图中选取第 $2,4$ 行和第 $2,4,5$ 列交叉位置的元素得到一个 $2 \times 3$ 的子矩阵如下所示。 |$9$|$\color{#6a5acd}3$|$3$|$\color{#6a5acd}3$|$\color{#6a5acd}9$| |:-|:-|:-|:-|:-| |$\color{#6a5acd}9$|$\color{blue}4$|$\color{#6a5acd}8$|$\color{blue}7$|$\color{blue}4$| |$1$|$\color{#6a5acd}7$|$4$|$\color{#6a5acd}6$|$\color{#6a5acd}6$| |$\color{#6a5acd}6$|$\color{blue}8$|$\color{#6a5acd}5$|$\color{blue}6$|$\color{blue}9$| |$7$|$\color{#6a5acd}4$|$5$|$\color{#6a5acd}6$|$\color{#6a5acd}1$| 此矩阵的其中一个 $2\times3$ 的子矩阵是: |$4$|$7$|$4$| |:-|:-|:-| |$8$|$6$|$9$| 2. 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。 3. 矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。 本题任务:给定一个 $n$ 行 $m$ 列的正整数矩阵,请你从这个矩阵中选出一个 $r$ 行 $c$ 列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。

输入输出格式

输入格式


第一行包含用空格隔开的四个整数 $n,m,r,c$,意义如问题描述中所述,每两个整数之间用一个空格隔开。 接下来的 $n$ 行,每行包含 $m$ 个用空格隔开的整数,用来表示问题描述中那个 $n$ 行 $m$ 列的矩阵。

输出格式


一个整数,表示满足题目描述的子矩阵的最小分值。

输入输出样例

输入样例 #1

5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1

输出样例 #1

6

输入样例 #2

7 7 3 3  
7 7 7 6 2 10 5
5 8 8 2 1 6 2 
2 9 5 5 6 1 7 
7 9 3 6 1 7 8 
1 9 1 4 7 8 8 
10 5 9 1 1 8 10
1 3 1 5 4 8 6

输出样例 #2

16

说明

#### 样例 1 说明 该矩阵中分值最小的 $2$ 行 $3$ 列的子矩阵由原矩阵的第 $4$ 行、第 $5$ 行与第 $1$ 列、第 $3$ 列、第 $4$ 列交叉位置的元素组成,为: |$6$|$5$|$6$| |:-|:-|:-| |$7$|$5$|$6$| 其分值为 $|6-5|+|5-6|+|7-5|+|5-6|+|6-7|+|5-5|+|6-6|=6$。 #### 样例 2 说明 该矩阵中分值最小的 $3$ 行 $3$ 列的子矩阵由原矩阵的第 $4$ 行、第 $5$ 行、第 $6$ 行与第 $2$ 列、第 $6$ 列、第 $7$ 列交叉位置的元素组成,选取的分值最小的子矩阵为: |$9$|$7$|$8$| |:-|:-|:-| |$9$|$8$|$8$| |$5$|$8$|$10$| #### 数据范围 - 对于 $50\%$ 的数据,$1\leq n\leq 12$,$1\leq m\leq 12$,矩阵中的每个元素 $1\leq a_{i,j}\leq20$; - 对于 $100\%$ 的数据,$1\leq n\leq 16$,$1\leq m\leq 16$,矩阵中的每个元素 $1\leq a_{i,j}\leq 1000$,$1\leq r\leq n$,$1\leq c\leq m$。