P2272 [ZJOI2007] 最大半连通子图
题目描述
一个有向图 $G=\left(V,E\right)$ 称为半连通的 (Semi-Connected),如果满足:$\forall u,v\in V$,满足 $u\to v$ 或 $v\to u$,即对于图中任意两点 $u,v$,存在一条 $u$ 到 $v$ 的有向路径或者从 $v$ 到 $u$ 的有向路径。
若 $G'=\left(V',E'\right)$ 满足 $V'\subseteq V$,$E'$ 是 $E$ 中所有跟 $V'$ 有关的边,则称 $G'$ 是 $G$ 的一个导出子图。若 $G'$ 是 $G$ 的导出子图,且 $G'$ 半连通,则称 $G'$ 为 $G$ 的半连通子图。若 $G'$ 是 $G$ 所有半连通子图中包含节点数最多的,则称 $G'$ 是 $G$ 的最大半连通子图。
给定一个有向图 $G$,请求出 $G$ 的最大半连通子图拥有的节点数 $K$,以及不同的最大半连通子图的数目 $C$。由于 $C$ 可能比较大,仅要求输出 $C$ 对 $X$ 的余数。
输入格式
无
输出格式
无
说明/提示
对于 $100\%$ 的数据,$N\le 10^5$,$M\le 10^6$,$X\le 10^8$。