[HAOI2015] 树上操作

题目描述

有一棵点数为 $N$ 的树,以点 $1$ 为根,且树有点权。然后有 $M$ 个操作,分为三种: - 操作 $1$:把某个节点 $x$ 的点权增加 $a$。 - 操作 $2$:把某个节点 $x$ 为根的子树中所有点的点权都增加 $a$。 - 操作 $3$:询问某个节点 $x$ 到根的路径中所有点的点权和。

输入输出格式

输入格式


第一行包含两个整数 $N,M$。表示点数和操作数。 接下来一行 $N$ 个整数,表示树中节点的初始权值。 接下来 $N-1$ 行每行两个正整数 $\mathit{from},\mathit{to}$, 表示该树中存在一条边 $(\mathit{from},\mathit{to})$。 再接下来 $M$ 行,每行分别表示一次操作。其中第一个数表示该操作的种类,之后接这个操作的参数。

输出格式


对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

输入输出样例

输入样例 #1

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

输出样例 #1

6
9
13

说明

对于 $100\%$ 的数据,$1\le N,M\le10^5$,且所有输入数据的绝对值都不会超过 $10^6$。