[SDOI2013] 森林

题目描述

小 Z 有一片森林,含有 $N$ 个节点,每个节点上都有一个非负整数作为权值。初始的时候,森林中有 $M$ 条边。 小Z希望执行 $T$ 个操作,操作有两类: - `Q x y k` 查询点 $x$ 到点 $y$ 路径上所有的权值中,第 $k$ 小的权值是多少。此操作保证点 $x$ 和点 $y$ 连通,同时这两个节点的路径上至少有 $k$ 个点。 - `L x y` 在点 $x$ 和点 $y$ 之间连接一条边。保证完成此操作后,仍然是一片森林。 为了体现程序的在线性,我们把输入数据进行了加密。设 $lastans$ 为程序上一次输出的结果,初始的时候 $lastans$ 为 $0$。 对于一个输入的操作 `Q x y k`,其真实操作为 `Q x^lastans y^lastans k^lastans`。 对于一个输入的操作 `L x y`,其真实操作为 `L x^lastans y^lastans`。其中 `^` 运算符表示异或,等价于 Pascal 中的 `xor` 运算符。 请写一个程序来帮助小 Z 完成这些操作。

输入输出格式

输入格式


第一行包含一个正整数 $\mathrm{testcase}$,表示当前测试数据的测试点编号。 第二行包含三个整数 $N,M,T$,分别表示节点数、初始边数、操作数。 第三行包含 $N$ 个非负整数表示 $N$ 个节点上的权值。 接下来 $M$ 行,每行包含两个整数 $x$ 和 $y$,表示初始的时候,点 $x$ 和点 $y$ 之间有一条无向边。 接下来 $T$ 行,每行描述一个操作,格式为 `Q x y k` 或者 `L x y`,其含义见题目描述部分。

输出格式


对于每一个第一类操作,输出一个非负整数表示答案。

输入输出样例

输入样例 #1

1
8 4 8
1 1 2 2 3 3 4 4
4 7
1 8
2 4
2 1
Q 8 7 3
Q 3 5 1
Q 10 0 0
L 5 4
L 3 2
L 0 7
Q 9 2 5
Q 6 1 6

输出样例 #1

2 
2
1
4
2

说明

**样例解释** 对于第一个操作 `Q 8 7 3`,此时 $lastans=0$,所以真实操作为 `Q 8^0 7^0 3^0`,也即 `Q 8 7 3`。点 $8$ 到点 $7$ 的路径上一共有 $5$ 个点,其权值为 $4\ 1\ 1\ 2\ 4$。这些权值中,第三小的为 $2$,输出 $2$,$lastans$ 变为 $2$。 对于第二个操作 `Q 3 5 1` ,此时 $lastans=2$,所以真实操作为 `Q 3^2 5^2 1^2`,也即 `Q 1 7 3`。点 $1$ 到点 $7$ 的路径上一共有 $4$ 个点,其权值为 $1\ 1\ 2\ 4$ 。这些权值中,第三小的为 $2$,输出 $2$,$lastans$ 变为 $2$。之后的操作类似。 ----- **数据范围** | 测试点编号 | $N,M,T$ 的上界 | `L` 操作 | `Q` 操作 | 形态 | | :---------: | :------------: | :---------: | :--------: | :--: | | $1$ | $20$ | N/A | N/A | N/A | | $2$ | $200$ | N/A | N/A | N/A | | $3\sim 4$ | $4\times 10^4$ | 无 `L` 操作 | N/A | 链 | | $5\sim 6$ | $8\times 10^4$ | 无 `L` 操作 | N/A | 链 | | $7\sim 9$ | $8\times 10^4$ | 无 `L` 操作 | 保证 $k=1$ | N/A | | $10\sim 11$ | $4\times 10^4$ | N/A | 保证 $k=1$ | N/A | | $12\sim 13$ | $8\times 10^4$ | N/A | 保证 $k=1$ | N/A | | $14\sim 15$ | $4\times 10^4$ | 无 `L` 操作 | N/A | N/A | | $16\sim 17$ | $8\times 10^4$ | 无 `L` 操作 | N/A | N/A | | $18$ | $4\times 10^4$ | N/A | N/A | N/A | | $19\sim 20$ | $8\times 10^4$ | N/A | N/A | N/A | 注:N/A 表示没有特殊性。 对于 $100\%$ 的测试数据,所有节点的编号在 $1\sim N$ 的范围内。节点上的权值 $\le 10^9$。$M<N$。