P3358 最长k可重区间集问题

题目描述

给定实直线 $\text{L}$ 上 $n$ 个开区间组成的集合 $\mathbf{I}$,和一个正整数 $k$,试设计一个算法,从开区间集合 $\mathbf{I}$ 中选取出开区间集合 $\mathbf{S}\subseteq\mathbf{I}$,使得在实直线 $\text{L}$ 上的任意一点 $x$,$\text{S}$ 中包含 $x$ 的开区间个数不超过 $k$,且 $\sum_{z\in\text{S}}\lvert z\rvert$ 达到最大($\lvert z\rvert$ 表示开区间 $z$ 的长度)。 这样的集合 $\mathbf{S}$ 称为开区间集合 $\mathbf{I}$ 的最长 $k$ 可重区间集。$\sum_{z\in\text{S}}\lvert z\rvert$ 称为最长 $k$ 可重区间集的长度。 对于给定的开区间集合 $\mathbf{I}$ 和正整数 $k$,计算开区间集合 $\mathbf{I}$ 的最长 $k$ 可重区间集的长度。

输入格式

输出格式

说明/提示

对于 $100\%$ 的数据,$1\le n\le 500$,$1\le k\le 3$,$1 \le l < r \le 10^5$。