[ZJOI2017] 树状数组

题目描述

漆黑的晚上,九条可怜躺在床上辗转反侧。难以入眠的她想起了若干年前她的一次悲惨的 OI 比赛经历。那是一道基础的树状数组题。 给出一个长度为 $n$ 的数组 $A$,初始值都为 $0$,接下来进行 $m$ 次操作,操作有两种: * $1\ x$,表示将 $A_x$ 变成 $(A_x + 1) \bmod 2$。 * $2\ l\ r$,表示询问 $(\sum_{i=l}^r A_i) \bmod 2$。 尽管那个时候的可怜非常的 simple,但是她还是发现这题可以用树状数组做。当时非常 young 的她写了如下的算法: ![](https://cdn.luogu.com.cn/upload/pic/4744.png) 其中 $\mathrm{lowbit}(x)$ 表示数字 $x$ **最低**的非 $0$ 二进制位,例如 $\text{lowbit}(5) = 1, \text{lowbit}(12) = 4$。进行第一类操作的时候就调用 $\mathrm{Add}(x)$,第二类操作的时候答案就是 $\mathrm{Query}(l, r)$。 如果你对树状数组比较熟悉,不难发现可怜把树状数组写错了:**$\text{Add}$ 和 $\text{Find}$ 中 $x$ 变化的方向反了**。因此这个程序在最终测试时华丽的爆 0 了。 然而奇怪的是,在当时,这个程序通过了出题人给出的大样例——这也是可怜没有进行对拍的原因。 现在,可怜想要算一下,这个程序回答对每一个询问的概率是多少,这样她就可以再次的感受到自己是一个多么非的人了。然而时间已经过去了很多年,即使是可怜也没有办法完全回忆起当时的大样例。幸运的是,她回忆起了大部分内容,唯一遗忘的是每一次第一类操作的 $x$ 的值,因此她假定这次操作的 $x$ 是在 $[l_i, r_i]$ 范围内**等概率随机**的。 具体来说,可怜给出了一个长度为 $n$ 的数组 $A$,初始为 $0$,接下来进行了 $m$ 次操作: * $1\ l\ r$,表示在区间 $[l, r]$ 中等概率选取一个 $x$ 并执行 $\text{Add}(x)$ 。 * $2\ l\ r$,表示询问执行 $\text{Query}(l, r)$ 得到的结果是正确的概率是多少。

输入输出格式

输入格式


第一行输入两个整数 $n,m$。 接下来 $m$ 行每行描述一个操作,格式如题目中所示。

输出格式


对于每组询问,输出一个整数表示答案。如果答案化为最简分数后形如 $\frac x y$,那么你只需要输出 $x\times y^{-1} \bmod 998244353$ 后的值(即输出答案模 $998244353$)。

输入输出样例

输入样例 #1

5 5
1 3 3
2 3 5
2 4 5
1 1 3
2 2 5

输出样例 #1

1
0
665496236

说明

#### 样例说明 在进行完 $\mathrm{Add}(3)$ 之后,$A$ 数组变成了 $[0, 1, 1, 0, 0]$。所以前两次询问可怜的程序答案都是 $1$,因此第一次询问可怜一定正确,第二次询问可怜一定错误。 #### 数据范围 | 测试点编号 | $n$ | $m$ | 其他约定 | | :--------: | :----------------: | :----------------------------: | :----------------: | | $1$ | $\le 5$ | $\le 10$ | 无 | | $2$ | $\le 50$ | $\le 50$ | 无 | | $3$ | $\le 50$ | $\le 50$ | 无 | | $4$ | $\le 3\times 10^3$ | $\le 3\times 10^3$ | 无 | | $5$ | $\le 3\times 10^3$ | $\le 3\times 10^3$ | 无 | | $6$ | $10^5$ | $10^5$ | 所有询问都在修改后 | | $7$ | $10^5$ | $10^5$ | 所有询问都在修改后 | | $8$ | $10^5$ | $10^5$ | 无 | | $9$ | $10^5$ | $10^5$ | 无 | | $10$ | $10^5$ | $10^5$ | 无 | 对于 $100\%$ 的数据,保证 $1\leq l\leq r\leq n$。 更新:2018/05/13 @larryzhong 提供了 5 组强的数据。