[NOIP2017 提高组] 小凯的疑惑 / [蓝桥杯 2013 省] 买不到的数目

题目背景

NOIP2017 提高组 D1T1

题目描述

小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。每种金币小凯都有无数个。在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。现在小凯想知道在无法准确支付的物品中,最贵的价值是多少金币? 注意:输入数据保证存在小凯无法准确支付的商品。

输入输出格式

输入格式


两个正整数 $a$ 和 $b$,它们之间用一个空格隔开,表示小凯中金币的面值。

输出格式


一个正整数 $N$,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。

输入输出样例

输入样例 #1

3 7

输出样例 #1

11

说明

【输入输出样例 1 说明】 小凯手中有面值为 $3$ 和 $7$ 的金币无数个,在不找零的前提下无法准确支付价值为 $1,2,4,5,8,11$ 的物品,其中最贵的物品价值为 $11$,比 $11$ 贵的物品都能买到,比如: $12 = 3 \times 4 + 7 \times 0$; $13 = 3 \times 2 + 7 \times 1$; $14 = 3 \times 0 + 7 \times 2$; $15 = 3 \times 5 + 7 \times 0 $。 【数据范围与约定】 对于 $30\%$ 的数据: $1 \le a,b \le 50 $。 对于 $60\%$ 的数据: $1 \le a,b \le 10^4 $。 对于$ 100\%$ 的数据:$1 \le a,b \le 10^9 $。