P4046 [JSOI2010] 快递服务
题目描述
「飞奔」快递公司成立之后,已经分别与市内许多中小企业公司签订邮件收送服务契约。由于有些公司是在同一栋大楼内,所以「飞奔」公司收件的地点(收件点)最多只有 $m$ 点($1,2,\dots,m$),因此「飞奔」仅先行采购了三辆货车并聘用了三名司机,每天早上分别从收件地点 $1,2,3$ 出发。而在与客户的服务契约中有明确订约:「飞奔」必须在客户提出邮件寄送要求的隔天派人至该公司(地点)收件。
为了能更有效率的服务客户并节省收件时间,该公司设立了收件服务登记网站,客户如有邮件需要寄送,必须在需要收件的前一天就先上网登记。为了节省油量,「飞奔」就利用晚上先行安排三位司机隔天的收件路线。每位司机至各地点收件的顺序应与各公司上网登记的顺序相符且必须能在最省油的情况下完成当天所有的收件服务。因此每位司机有可能需要在不同时间重复到同一地点收件,或不同的司机有可能需在不同的时间点前往同一地点收件。
如下面范例二(收件公司地点依序为:`4 2 4 1 5 4 3 2 1`)所示,虽然司机 $1$ 一开始就已经在收件地点 $1$ 了,但是他却不能先把后面第四个登记的公司(地点 $1$)邮件先收了再前往第一、第二、或第三个登记收件地点(地点 $4,2,4$)收件。但是如果前三个登记收件的服务是由司机 $2$ 或 $3$ 来负责,则司机 $1$ 就可以在地点 $1$ 收了第四个登记的邮件后再前往后面所登记的地点收件。此外,在某些情况下,不一定每辆车都要收到货,也就是说,最佳收件方式也有可能是只需出动一或两辆车去收货。请写一个程序来帮「飞奔」公司计算每天依预约顺序至各收件地点收件的最少总耗油量。
### 简要题意
给定一个 $m \times m$ 的矩阵 $D$。我们规定一个序列 $a(a_0,a_1,a_2,\dots,a_n)$ 的花费为 $\sum\limits_{i=1}^{n}D_{a_{i-1},a_i}$。
现在给定你一个长度 $\leq 1000$ 的序列 $s$,请你把它分成三个子序列 $a,b,c$,并且规定 $a_0=1,b_0=2,c_0=3$,求出所有划分方案中它们的最小化费和。
特殊地,矩阵 $D$ 满足三角不等式,具体见输入格式中的详细解释。
(By El_destructor)
输入格式
无
输出格式
无
说明/提示
#### 样例解释
到每个请求收件地点的司机分别为 `1 1 1 1 3 3 2 2 2 1`,因此司机 $1$ 只需从起使点 $1$ 移动到地点 $3$,司机 $2$ 只需停留在地点 $2$,司机 $3$ 从起始点 $3$ 移动到地点 $4$。
#### 数据范围
$3 \leq m \leq 200,1 \leq s_i \leq m$。