P4194 矩阵
题目描述
给定一个整数矩阵 $A[n\times m]$,求一个矩阵 $B[n\times m]$,满足 $\forall 1\le i\le n,1\le j\le m,B_{i,j}\in[L,R]$,且使下式值最小:
$$\max\begin{cases}\displaystyle\max_{1\le j\le m}\left\{\left|\sum_{i=1}^n\left(A_{i,j}-B_{i,j}\right)\right|\right\}\\\displaystyle\max_{1\le i\le n}\left\{\left|\sum_{j=1}^m\left(A_{i,j}-B_{i,j}\right)\right|\right\}\end{cases}$$
输入格式
无
输出格式
无
说明/提示
对于 $100\%$ 的数据满足 $n,m\le200$,$0\le L\le R\le1000$,$0\le A_{i,j}\le1000$。