[USACO10NOV] Buying Feed G
题目描述
约翰开车来到镇上,他要带$K$吨饲料回家。运送饲料是需要花钱的,如果他的车上有$X$吨饲料,每公里就要花费$X^2$元,开车D公里就需要$D\times X^2$元。约翰可以从$N$家商店购买饲料,所有商店都在一个坐标轴上,第$i$家店的位置是$X_i$,饲料的售价为每吨$C_i$元,库存为$F_i$。
约翰从坐标$X=0$开始沿坐标轴正方向前进,他家在坐标$X=E$上。为了带$K$吨饲料回家,约翰最少的花费是多少呢?假设所有商店的库存之和不会少于$K$。
举个例子,假设有三家商店,情况如下所示:
|坐标|$X=1$|$X=3$|$X=4$|$E=5$|
|:-:|:-:|:-:|:-:|:-:|
|库存|$1$|$1$|$1$|
|售价|$1$|$2$|$2$|
如果$K=2$,约翰的最优选择是在离家较近的两家商店购买饲料,则花在路上的钱是$1+4=5$,花在商店的钱是$2+2=4$,共需要$9$元。
输入输出格式
输入格式
第$1$行:三个整数$K,E,N$ 第$2..N+1$行:第$i+1$行的三个整数代表,$X_i,F_i,C_i$.
输出格式
一个整数,代表最小花费
输入输出样例
输入样例 #1
2 5 3
3 1 2
4 1 2
1 1 1
输出样例 #1
9
说明
$1 \leq K \leq 10000 , 1 \leq E \leq 500 , 1 \leq N \leq 500$
$0 < Xi < E, 1 \leq Fi \leq 10000, 1 \leq C_i \leq 10^7$