[USACO05DEC] Scales S
题目描述
约翰有一架用来称牛的体重的天平。与之配套的是 $ N \ ( 1 \leq N \leq 1000 ) $ 个已知质量的砝码(所有砝码质量的数值都在 $32$ 位带符号整数范围内)。
每次称牛时,他都把某头奶牛安置在天平的某一边,然后往天平另一边加砝码,直到天平平衡,于是此时砝码的总质量就是牛的质量(约翰不能把砝码放到奶牛的那边,因为奶牛不喜欢称体重,每当约翰把砝码放到她的蹄子底下,她就会尝试把砝码踢到约翰脸上)。
天平能承受的物体的质量不是无限的,当天平某一边物体的质量大于 $ C \ ( 1 \leq C \leq 2^{30} ) $ 时,天平就会被损坏。砝码按照它们质量的大小被排成一行。并且,这一行中从第 $3$ 个砝码开始,每个砝码的质量至少等于前面两个砝码(也就是质量比它小的砝码中质量最大的两个)的质量的和。
约翰想知道,用他所拥有的这些砝码以及这架天平,能称出的质量最大是多少。由于天平的最大承重能力为 $C$,他不能把所有砝码都放到天平上。
现在约翰告诉你每个砝码的质量,以及天平能承受的最大质量,你的任务是选出一些砝码,使它们的质量和在不压坏天平的前提下是所有组合中最大的。
输入输出格式
输入格式
第 $1$ 行输入两个用空格隔开的正整数 $ N $ 和 $ C $。
第 $2$ 到 $ N+1 $ 行:每一行仅包含一个正整数,即某个砝码的质量。保证这些砝码的质量是一个不下降序列。
输出格式
输出一个正整数,表示用所给的砝码能称出的不压坏天平的最大质量。
输入输出样例
输入样例 #1
3 15
1
10
20
输出样例 #1
11