P5304 [GXOI/GZOI2019] 旅行者
题目描述
J 国有 $n$ 座城市,这些城市之间通过 $m$ 条单向道路相连,已知每条道路的长度。
一次,居住在 J 国的 Rainbow 邀请 Vani 来作客。不过,作为一名资深的旅行者,Vani 只对 J 国的 $k$ 座历史悠久、自然风景独特的城市感兴趣。
为了提升旅行的体验,Vani 想要知道他感兴趣的城市之间「两两最短路」的最小值(即在他感兴趣的城市中,最近的一对的最短距离)。
也许下面的剧情你已经猜到了—— Vani 这几天还要忙着去其他地方游山玩水,就请你帮他解决这个问题吧。
输入格式
无
输出格式
无
说明/提示
### 样例解释
对于第一组数据,$1$ 到 $3$ 最短路为 $5$;$1$ 到 $6$ 最短路为 $7$;$3,6$ 无法到达,所以最近的两点为 $1,3$,最近的距离为 $5$。
对于第二组数据,$1$ 到 $2$ 最短路为 $6$;$5$ 到 $3$ 最短路为 $6$;其余的点均无法互相达,所以最近的两点为 $1,2$ 和 $5,3$,最近的距离为 $6$。
### 数据范围
$2 \le k \le n$,$1 \le x,y \le n$,$1 \le z \le 2 \times 10^9$,$T \leq 5$。
|测试点编号|$n$ 的规模|$m$ 的规模|约定|
|:-:|:-:|:-:|:-:|
|$1$|$\le 1,000$|$\le 5,000$|无|
|$2$|$\le 1,000$|$\le 5,000$|无|
|$3$|$\le 100,000$|$\le 500,000$|保证数据为有向无环图|
|$4$|$\le 100,000$|$\le 500,000$|保证数据为有向无环图|
|$5$|$\le 100,000$|$\le 500,000$|保证数据为有向无环图|
|$6$|$\le 100,000$|$\le 500,000$|无|
|$7$|$\le 100,000$|$\le 500,000$|无|
|$8$|$\le 100,000$|$\le 500,000$|无|
|$9$|$\le 100,000$|$\le 500,000$|无|
|$10$|$\le 100,000$|$\le 500,000$|无|
2024-12-18 管理员注:[在测试点五中可能存在自环](https://www.luogu.com.cn/discuss/1022672)。