[JSOI2019] 神经网络

题目背景

火星探险队发现,火星人的思维方式与人类非常不同,是因为他们拥有与人类很不一样的神经网络结构。为了更好地理解火星人的行为模式,JYY 对小镇上火星人的大脑进行了扫描,得到了一些重要数据。

题目描述

火星人在出生后,神经网络可以看作是一个由若干无向树 $\{T_1(V_1, E_1), T_2(V_2, E_2),\ldots T_m(V_m, E_m)\}$ 构成的森林。随着火星人年龄的增长,神经连接的数量也不断增长。初始时,神经网络中生长的连接 $E^\ast = \varnothing$。神经网络根据如下规则生长: - 如果节点 $u \in V_i, v \in V_j$ 分别属于不同的无向树 $T_i$ 和 $T_j$($i \neq j$),则 $E^\ast$ 中应当包含边 $(u, v)$。 最终,在不再有神经网络连接可能生长后,神经网络之间的节点连接可以看成是一个无向图 $G(V,E)$,其中 $$V=V_1\cup V_2\cup \ldots \cup V_m,E=E_1\cup E_2\cup \ldots \cup E_m\cup E^\ast$$ 火星人的决策是通过在 $G(V, E)$ 中建立环路完成的。针对不同的外界输入,火星人会建立不同的神经连接环路,从而做出不同的响应。为了了解火星人行为模式的复杂性,JYY 决定计算 $G$ **中哈密顿回路的数量**。 $G(V, E)$ 的哈密顿回路是一条简单回路,从第一棵树的第一个节点出发,恰好经过 $V$ 中的其他节点一次且仅一次,并且回到第一棵树的第一个节点。

输入输出格式

输入格式


第一行读入 $m$,表示火星人神经网络初始时无向树的数量。 接下来输入有 $m$ 部分,第 $i$ 部分描述了树 $T_i$。 对于 $T_i$,输入的第一行是树 $T_i(V_i, E_i)$ 中节点的数量 $k_i$。假设 $V_i = \{v_1, v_2,\ldots ,v_{k_i}\}$。 接下来 $k_{i} - 1$ 行,每行两个整数 $x, y$,表示该树节点 $v_x, v_y$($1 \le x, y \le k_i$)之间有一条树边,即 $(v_x, v_y) \in E_i$。

输出格式


因为哈密顿回路的数量可能很多,你只需要输出一个非负整数,表示答案对 $998244353$ 取模后的值。

输入输出样例

输入样例 #1

2
3
1 2
1 3
2
1 2

输出样例 #1

12

说明

![](https://cdn.luogu.com.cn/upload/pic/57736.png)