P5905 【模板】全源最短路(Johnson)

题目描述

给定一个包含 $n$ 个结点和 $m$ 条带权边的有向图,求所有点对间的最短路径长度,一条路径的长度定义为这条路径上所有边的权值和。 注意: 1. 边权**可能**为负,且图中**可能**存在重边和自环; 2. 部分数据卡 $n$ 轮 SPFA 算法。

输入格式

输出格式

说明/提示

【样例解释】 左图为样例 $1$ 给出的有向图,最短路构成的答案矩阵为: ``` 0 4 11 8 11 1000000000 0 7 4 7 1000000000 -5 0 -3 0 1000000000 -2 5 0 3 1000000000 -1 4 1 0 ``` 右图为样例 $2$ 给出的有向图,红色标注的边构成了负环,注意给出的图不一定连通。 ![](https://cdn.luogu.com.cn/upload/image_hosting/7lb35u4u.png) 【数据范围】 对于 $100\%$ 的数据,$1\leq n\leq 3\times 10^3,\ \ 1\leq m\leq 6\times 10^3,\ \ 1\leq u,v\leq n,\ \ -3\times 10^5\leq w\leq 3\times 10^5$。 对于 $20\%$ 的数据,$1\leq n\leq 100$,不存在负环(可用于验证 Floyd 正确性) 对于另外 $20\%$ 的数据,$w\ge 0$(可用于验证 Dijkstra 正确性) upd. 添加一组 Hack 数据:针对 SPFA 的 SLF 优化