[WC2022] 秃子酋长

题目背景

5s 512M -O2

题目描述

传说在明斯克航空航天局中,有一名强大的秃子酋长。 秃子酋长法力无边,他的头上没有头发,而且头特别硬,跑得还不慢。 这一天,豌豆射手来到了明斯克航空航天局。 秃子酋长为了考验这一位新人,给他出了这样一道题: 给一个长为 $n$ 的排列 $a_1,\dots, a_n$,有 $m$ 次询问,每次询问区间 $[l, r]$ 内,排序后相邻的数在原序列中的位置的差的绝对值之和。

输入输出格式

输入格式


第一行两个数表示 $n, m$; 之后一行 $n$ 个数依次表示序列 $a$ 中的元素; 之后 $m$ 行,每行两个数 $l, r$ 表示一次查询。

输出格式


对于每次询问,输出一行一个数表示答案。

输入输出样例

输入样例 #1

5 2
5 4 2 3 1
3 4
2 5

输出样例 #1

1
5

说明

**【样例解释】** 第一个询问,$2,3$ 排序后为 $2,3$,在原序列中的位置为 $3,4$,相邻元素在原序列中位置差的绝对值之和为 $|3 - 4| = 1$。 第二个询问,$4, 2, 3, 1$ 排序后为 $1, 2, 3, 4$,在原序列中的位置为 $5, 3, 4, 2$,相邻元素在原序列中位置差的绝对值之和为 $|5 - 3| + |3 - 4| + |4 - 2| = 5$。 **【数据范围】** 对 $10\%$ 的数据,$n, m \leq 10^3$; 对另外 $10\%$ 的数据,$n, m \leq 5 \times 10^4$; 对另外 $10\%$ 的数据,$n, m \leq 10^5$; 对另外 $10\%$ 的数据,$n, m \leq 2 \times 10^5$; 对另外 $20\%$ 的数据,$|a_i - i| \leq 10$; 对另外 $20\%$ 的数据,$m=\dfrac{n(n-1)}{2}$; 对其余数据,无特殊限制。 对于 $100\%$ 的数据,满足 $1 \leq n, m \leq 5\times 10^5$,$1 \leq a_i \leq n$,$a_i$ 互不相同,$1 \leq l \leq r \leq n$,所有数值为整数。