[USACO23OPEN] Pareidolia P
题意翻译
给定一个字符串 $t$。
定义 $B(s)$ 表示 $s$ 这个字符串中删除一些字符后最多能找出多少个 ```bessie```。
定义 $A(t)$ 表示对于 $t$ 中的每个子串 $s$,求 $B(s)$ 的和。
先输出一开始的 $A(t)$。接下来有 $q$ 次修改,每次把 $t$ 中第 $p$ 个字符改成 $c$,要求输出每次修改完的 $A(t)$。
题目描述
Pareidolia is the phenomenon where your eyes tend to see familiar patterns in images where none really exist -- for example seeing a face in a cloud. As you might imagine, with Farmer John's constant proximity to cows, he often sees cow-related patterns in everyday objects. For example, if he looks at the string `bqessiyexbesszieb`, Farmer John's eyes ignore some of the letters and all he sees is `bessiebessie`.
Given a string $s$, let $B(s)$ represent the maximum number of repeated copies of `bessie` one can form by deleting zero or more of the characters from $s$. In the example above, $B(bqessiyexbesszieb)=2$. Furthermore, given a string $t$, let $A(t)$ represent the sum of $B(s)$ over all contiguous substrings $s$ of $t$.
Farmer John has a string t of length at most $2\times10^5$ consisting only of characters a-z. Please compute A(t), and how A(t) would change after $U (1\le U\le2\times10^5)$ updates, each changing a character of t. Updates are cumulative.
输入输出格式
输入格式
The first line of input contains $t$.
The next line contains $U$, followed by $U$ lines each containing a position $p$ $(1\le p\le N)$ and a character $c$ in the range a-z, meaning that the pth character of $t$ is changed to $c$.
输出格式
Output $U+1$ lines, the total number of bessies that can be made across all substrings of $t$ before any updates and after each update.
输入输出样例
输入样例 #1
bessiebessie
3
3 l
7 s
3 s
输出样例 #1
14
7
1
7
说明
Before any updates, twelve substrings contain exactly $1$ `bessie` and $1$ string contains exactly $2$ `bessie`s, so the total number of bessies is $12⋅1+1⋅2=14$.
After one update, $t$ is `belsiebessie`. Seven substrings contain exactly one `bessie`.
After two updates, $t$ is `belsiesessie`. Only the entire string contains `bessie`.
Input $2$: $|t|,U\le300$;
Inputs $3-5$: $U\le10$;
Inputs $6-13$: $|t|,U\le10^5$;
Inputs $14-21$: No additional constraints.