[SNCPC2019] Grid with Arrows
题意翻译
**【题目描述】**
宝宝刚刚在他的左口袋里发现了一个 $n$ 行 $m$ 列的网格,其中第 $i$ 行第 $j$ 列的单元格(表示为 $(i, j)$)包含一个箭头(指向上、下、左或右)和一个整数 $a_{i, j}$。
宝宝决定用这个网格玩一个游戏。他首先会选择一个单元格作为初始单元格并标记它。在标记一个单元格之后(假设宝宝刚刚标记了单元格 $(i, j)$),宝宝将根据单元格 $(i, j)$ 中的箭头和整数继续标记另一个单元格。
- 如果单元格 $(i, j)$ 中的箭头指向上方,宝宝将继续标记单元格 $(i-a_{i, j}, j)$,如果该单元格存在的话。
- 如果单元格 $(i, j)$ 中的箭头指向下方,宝宝将继续标记单元格 $(i+a_{i, j}, j)$,如果该单元格存在的话。
- 如果单元格 $(i, j)$ 中的箭头指向左方,宝宝将继续标记单元格 $(i, j-a_{i, j})$,如果该单元格存在的话。
- 如果单元格 $(i, j)$ 中的箭头指向右方,宝宝将继续标记单元格 $(i, j+a_{i, j})$,如果该单元格存在的话。
如果宝宝决定标记的单元格不存在,或者该单元格已经被标记,游戏结束。
宝宝想知道他是否可以选择一个合适的初始单元格,以便在游戏结束前恰好标记网格中的每一个单元格一次。请帮助他找到答案。
**【输入格式】**
有多个测试用例。第一行包含一个整数 $T$,表示测试用例的数量。对于每个测试用例:
第一行包含两个整数 $n$ 和 $m$ ($1 \le n \times m \le 10^5$),表示网格的行数和列数。
接下来的 $n$ 行中,第 $i$ 行包含一个字符串 $s_i$,由小写英文字母组成($|s_i| = m$,$s_{i, j} \in \{\text{`u' (ascii: 117)}, \text{`d' (ascii: 100)}, \text{`l' (ascii: 108)}, \text{`r'(ascii: 114)}\}$),其中 $s_{i, j}$ 表示单元格 $(i, j)$ 中箭头的方向。
- 如果 $s_{i, j} = \text{`u'}$,单元格 $(i, j)$ 中的箭头指向上方。
- 如果 $s_{i, j} = \text{`d'}$,单元格 $(i, j)$ 中的箭头指向下方。
- 如果 $s_{i, j} = \text{`l'}$,单元格 $(i, j)$ 中的箭头指向左方。
- 如果 $s_{i, j} = \text{`r'}$,单元格 $(i, j)$ 中的箭头指向右方。
接下来的 $n$ 行中,第 $i$ 行包含 $m$ 个整数 $a_{i, 1}, a_{i, 2}, \dots, a_{i, m}$ ($1 \le a_{i, j} \le \max(n, m)$),其中 $a_{i, j}$ 表示单元格 $(i, j)$ 中的整数。
保证所有测试用例的 $n \times m$ 之和不超过 $10^6$。
**【输出格式】**
对于每个测试用例输出一行。如果宝宝可以找到一个合适的初始单元格,输出 “Yes”(不含引号),否则输出 “No”(不含引号)。
**【样例解释】**
对于第一个示例测试用例,宝宝可以选择单元格 $(1, 2)$ 作为初始单元格,这样他可以按以下顺序恰好打勾所有单元格:$(1, 2), (2, 2), (2, 3), (2, 1), (1, 1), (1, 3)$。
对于第二个示例测试用例,无论选择哪个单元格作为初始单元格,宝宝最多只能打勾 2 个单元格。
翻译来自于:[ChatGPT](https://chatgpt.com/)。
题目描述
BaoBao has just found a grid with $n$ rows and $m$ columns in his left pocket, where the cell in the $j$-th column of the $i$-th row (indicated by $(i, j)$) contains an arrow (pointing either upwards, downwards, leftwards or rightwards) and an integer $a_{i, j}$.
BaoBao decides to play a game with the grid. He will first select a cell as the initial cell and tick it. After ticking a cell (let's say BaoBao has just ticked cell $(i, j)$), BaoBao will go on ticking another cell according to the arrow and the integer in cell $(i, j)$.
- If the arrow in cell $(i, j)$ points upwards, BaoBao will go on ticking cell $(i-a_{i, j}, j)$ if it exists.
- If the arrow in cell $(i, j)$ points downwards, BaoBao will go on ticking cell $(i+a_{i, j}, j)$ if it exists.
- If the arrow in cell $(i, j)$ points leftwards, BaoBao will go on ticking cell $(i, j-a_{i, j})$ if it exists.
- If the arrow in cell $(i, j)$ points rightwards, BaoBao will go on ticking cell $(i, j+a_{i, j})$ if it exists.
If the cell BaoBao decides to tick does not exist, or if the cell is already ticked, the game ends.
BaoBao is wondering if he can select a proper initial cell, so that he can tick every cell in the grid exactly once before the game ends. Please help him find the answer.
输入输出格式
输入格式
There are multiple test cases. The first line contains an integer $T$, indicating the number of test cases. For each test case:
The first line contains two integers $n$ and $m$ ($1 \le n \times m \le 10^5$), indicating the number of rows and columns of the grid.
For the following $n$ lines, the $i$-th line contains a string $s_i$ consisting of lowercased English letters ($|s_i| = m$, $s_{i, j} \in \{\text{`u' (ascii: 117)}, \text{`d' (ascii: 100)}, \text{`l' (ascii: 108)}, \text{`r'(ascii: 114)}\}$), where $s_{i, j}$ indicates the direction of arrow in cell $(i, j)$.
- If $s_{i, j} = \text{`u'}$, the arrow in cell $(i, j)$ points upwards.
- If $s_{i, j} = \text{`d'}$, the arrow in cell $(i, j)$ points downwards.
- If $s_{i, j} = \text{`l'}$, the arrow in cell $(i, j)$ points leftwards.
- If $s_{i, j} = \text{`r'}$, the arrow in cell $(i, j)$ points rightwards.
For the following $n$ lines, the $i$-th line contains $m$ integers $a_{i, 1}, a_{i, 2}, \dots, a_{i, m}$ ($1 \le a_{i, j} \le \max(n, m)$), where $a_{i, j}$ indicates the integer in cell $(i, j)$.
It's guaranteed that the sum of $n \times m$ of all test cases does not exceed $10^6$.
输出格式
For each test case output one line. If BaoBao can find a proper initial cell, print ``Yes`` (without quotes), otherwise print ``No`` (without quotes).
输入输出样例
输入样例 #1
2
2 3
rdd
url
2 1 1
1 1 2
2 2
rr
rr
1 1
1 1
输出样例 #1
Yes
No
说明
For the first sample test case, BaoBao can select cell $(1, 2)$ as the initial cell, so that he can tick all the cells exactly once in the following order: $(1, 2), (2, 2), (2, 3), (2, 1), (1, 1), (1, 3)$.
For the second sample test case, BaoBao can only tick at most $2$ cells no matter which cell is selected as the initial cell.