[SNCPC2019] Turn It Off
题意翻译
**【题目描述】**
现在已经是 21:30 了,宝宝该上床睡觉了。为了确保他的睡眠质量,宝宝决定关掉卧室里的所有灯。
宝宝的卧室里有 $n$ 盏灯,从1到 $n$ 排成一排。每次宝宝可以选择一个整数 $i$,并将从第 $i$ 盏灯到第 $(i+L-1)$ 盏灯(包括两端)之间的所有灯关掉,其中 $L$ 是一个预定义的正整数。注意,每次操作的 $L$ 值必须相同。
给定所有灯的初始状态,请帮助宝宝确定可能的最小 $L$ 使得他能在 $k$ 次操作内关掉所有的灯。
**【输入格式】**
有多个测试用例。输入的第一行包含一个整数 $T$,表示测试用例的数量。对于每个测试用例:
第一行包含两个整数 $n$ 和 $k$($1 \le k \le n \le 2 \times 10^5$)。
第二行包含一个字符串 $s$($|s| = n$, $s \in \{\text{`0'}, \text{`1'}\}$)表示灯的初始状态。设 $s_i$ 为字符串 $s$ 的第 $i$ 个字符,如果 $s_i = \text{`1'}$,则第 $i$ 盏灯初始是亮的,否则是灭的。保证 $s$ 中至少有一个 `1`。
保证所有测试用例的 $n$ 之和不超过 $2 \times 10^6$。
**【输出格式】**
对于每个测试用例输出一行,包含一个整数,表示可能的最小 $L$。
翻译来自于:[ChatGPT](https://chatgpt.com/)。
题目描述
It's already 21:30 now, and it's time for BaoBao to go to bed. To ensure his sleeping quality, BaoBao decides to turn all the lights in his bedroom off.
There are $n$ lights, numbered from 1 to $n$, arranged in a row in BaoBao's bedroom. Each time BaoBao can select an integer $i$ and turn all the lights numbered from $i$ to $(i+L-1)$ (both inclusive) off, where $L$ is a predefined positive integer. Note that each time the value of $L$ must be the same.
Given the initial status of all the lights, please help BaoBao determine the smallest possible $L$ so that he can turn all the lights off within $k$ times.
输入输出格式
输入格式
There are multiple test cases. The first line of the input contains an integer $T$, indicating the number of test cases. For each test case:
The first line contains two integers $n$ and $k$ ($1 \le k \le n \le 2 \times 10^5$).
The second line contains a string $s$ ($|s| = n$, $s \in \{\text{`0'}, \text{`1'}\}$) indicating the initial status of the lights. Let $s_i$ be the $i$-th character in $s$, if $s_i = \text{`1'}$ then the $i$-th light is initially on, otherwise it's initially off. It's guaranteed that there is at least one `1· in $s$.
It's guaranteed that the sum of $n$ of all test cases will not exceed $2 \times 10^6$.
输出格式
For each test case output one line containing one integer, indicating the smallest possible $L$.
输入输出样例
输入样例 #1
2
10 4
0101011111
3 1
010
输出样例 #1
3
1