GSS6 - Can you answer these queries VI
题意翻译
## 题目大意
给出一个由$N$个整数组成的序列$A$,你需要应用$M$个操作:
* `I p x` 在$~p~$处插入插入一个元素$~x~$
* `D p` 删除$~p~$处的一个元素
* `R p x` 修改$~p~$处元素的值为$~x~$
* `Q l r` 查询一个区间$\left[l,r\right]$的最大子段和
## 输入格式
第一行一个数$N$,表示序列的长度
第二行$N$个数,表示初始序列$A$
第三行一个数$M$,表示操作的次数
接下来的$M$行,每行一个操作,格式见题目描述
## 输出格式
输出若干行,每行一个整数,表示查询区间的最大子段和
## 数据规模
对于 $100\%$ 的数据,保证 $1\le N\le 10^5,1\le Q\le 10^5,0\le|A_i|\le 10^4,0\le|x|\le 10^4$
感谢@Anoxiacxy 提供的翻译
题目描述
Given a sequence A of N _(N <= 100000)_ integers, you have to apply Q _(Q <= 100000)_ operations:
Insert, delete, replace an element, find the maximum contiguous(non empty) sum in a given interval.
输入输出格式
输入格式
The first line of the input contains an integer N.
The following line contains N integers, representing the starting
sequence A1..AN, _(|Ai| <= 10000)_.
The third line contains an integer Q. The next Q lines contains the operations in following form:
**I x y**: insert element y at position x _(between x - 1 and x)_.
**D x** : delete the element at position x.
**R x y**: replace element at position x with y.
**Q x y**: print max{Ai + Ai+1 + .. + Aj | x <= i <= j <= y}.
All given positions are valid, and given values are between -10000 and +10000.
The sequence will never be empty.
输出格式
For each **"Q"** operation, print an integer(one per line) as described above.
输入输出样例
输入样例 #1
5
3 -4 3 -1 6
10
I 6 2
Q 3 5
R 5 -4
Q 3 5
D 2
Q 1 5
I 2 -10
Q 1 6
R 2 -1
Q 1 6
输出样例 #1
8
3
6
3
5